\qquad
\qquad
\qquad

Patterns in Electron Configuration

One of the many patterns contained in the periodic table is that of electron configuration. In this activity, you will identify these patterns. Later, you will use these patterns to determine the order in which electrons fill the orbitals of an atom. As you complete the activity, keep the following in mind:

- Period = row, Group = column
- Use the table on your book cover, which shows only valence electrons.
- There are two number systems for the Groups. We will focus on the A/B system.

1. Which Groups have an s-orbital as the last orbital? \qquad
2. Which Groups have a p-orbital as the last orbital? \qquad
3. Which Groups have a d-orbital as the last orbital? \qquad
4. Which section of the table is left? This section corresponds to the f-orbitals.
5. Look at Group 1A. What is the relationship between the Period number and the energy level of the valence electrons?
6. Look at Group 3A. What is the relationship between the Period number and the energy level of the valence electrons?
7. Look at Group 3B. What is the relationship between the Period number and the energy level of the d-orbitals?
8. Look at the Inner Transition Metals (bottom section). The Lanthanide series (58-71) is part of Period 6. The Actinide series $(90-103)$ is part of Period 7. What is the relationship between the Period number and the energy level of the f-orbitals?
9. Look at all of the A Groups. What is the relationship between the Group number (1A, 2A, etc.) and the total number of valence electrons for each element? (Add up the exponents to find the total number of valence electrons.)

